Integrasi CNN-Bi-LSTM dengan Attention Mechanism for rupiah exchange rate prediction
Main Article Content
Abstract
Exchange rates are a crucial indicator of a nation's economic stability. Fluctuations in exchange rates can influence investment decisions, international trade, and monetary policies. The prediction of foreign exchange rates against the Indonesian Rupiah holds significant importance in financial analysis and decision-making. Exchange rates are a crucial indicator of a nation's economic stability, influencing investment decisions, international trade, and monetary policies. However, accurately predicting foreign exchange rates remains a challenging problem due to the highly. This research aims to enhance prediction accuracy by proposing a CNN Bi-LSTM model with the addition of an Attention Mechanism (CNN Bi-LSTM AM). Historical exchange rate data were normalized and divided into training, testing, and validation sets. The CNN model extracts local features, BiLSTM captures bidirectional temporal patterns, and the Attention Mechanism highlights critical features to improve data processing efficiency. The evaluation was conducted using Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) metrics. The results show that CNN Bi-LSTM AM outperformed BiLSTM and CNN Bi-LSTM, achieving MAPE values of 0.7795%, 0.3877%, 0.4062%, 0.7646%, 0.4267%, and RMSE values of 0.1953, 0.2199, 0.2069, 0.1758, 0.3250 for USD, Pounds, EURO, Yen, and Franc, respectively. The addition of the Attention Mechanism significantly contributed to improved accuracy, distinguishing this model from previous research. This study supports the relevance of innovation in hybrid architectures and Attention Mechanisms for financial time series predictions
Downloads
Article Details
Ardesfira, G., Zedha, H. F., Fazana, I., Rahmadhiyanti, J., Rahima, S., & Anwar, S. (2022). Peramalan Nilai Tukar Rupiah Terhadap Dollar Amerika Dengan Menggunakan Metode Autoregressive Integrated Moving Average (Arima). Jambura Journal of Probability and Statistics, 3(2), 71–84. https://doi.org/10.34312/jjps.v3i2.15469
ArunKumar, K. E., Kalaga, D. V., Mohan Sai Kumar, C., Kawaji, M., & Brenza, T. M. (2022). Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alexandria Engineering Journal, 61(10), 7585–7603. https://doi.org/10.1016/j.aej.2022.01.011
Barrett, D. G., Morcos, A. S., & Macke, J. H. (2019). Analyzing biological and artificial neural networks: challenges with opportunities for synergy? Current Opinion in Neurobiology, 55, 55–64. https://doi.org/10.1016/j.conb.2019.01.007
Bustamam, A., Mushliha, Yanuar, A., Anki, P., & Ulfa, A. (2022). Evaluation Quantitative Structure-Activity Relationship (Qsar) Using Ensemble Learning Methods on Acetylcholinesterase Inhibitors for Alzheimer’S Disease. Communications in Mathematical Biology and Neuroscience, 2022, 1–26. https://doi.org/10.28919/cmbn/7549
Casolaro, A., Capone, V., Iannuzzo, G., & Camastra, F. (2023). Deep Learning for Time Series Forecasting: Advances and Open Problems. Information (Switzerland), 14(11). https://doi.org/10.3390/info14110598
Chen, W., & Shi, K. (2021). Multi-scale Attention Convolutional Neural Network for time series classification. Neural Networks, 136, 126–140. https://doi.org/10.1016/j.neunet.2021.01.001
Devi, A., & Hendikawati, P. (2024). Prediksi Kurs Rupiah Terhadap Dolar dengan Menggunakan Model Long-Short Term Memory. Prisma, 7, 882–891. https://proceeding.unnes.ac.id/prisma
Kiplangat, D. C. (2024). Forecasting currency exchange rates using EMD-ARIMA Model. 13(October), 1469–1484.
Liu, Z., Liu, X., & Zhou, L. (2024). A Hybrid CNN and LSTM based Model for Financial Crisis Prediction. Tehnicki Vjesnik, 31(1), 185–192. https://doi.org/10.17559/TV-20230307000415
Lstm, I. M., & Dalam, D. A. N. B. (2024). Implementasi model lstm, gru, bilstm, dan bigru dalam prediksi harga nikel. 7(2), 413–420.
Marjani, M., Mahdianpari, M., & Mohammadimanesh, F. (2024). CNN-BiLSTM: A Novel Deep Learning Model for Near-Real-Time Daily Wildfire Spread Prediction. Remote Sensing, 16(8). https://doi.org/10.3390/rs16081467
Mushliha, M. (2024). Implementasi CNN-BiLSTM untuk Prediksi Harga Saham Bank Syariah di Indonesia. Jambura Journal of Mathematics, 6(2), 195–203. https://doi.org/10.37905/jjom.v6i2.26509
Nguyen, A., & Ha, S. (2024). CNN-BiLSTM and Time Delay Embedding: A Single-Step Hybrid Deep Learning Model for Stock Price Forecasting. SSRN Electronic Journal, 1–21. https://doi.org/10.2139/ssrn.4729187
Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48–62. https://doi.org/10.1016/j.neucom.2021.03.091
Pamungkas, P. A., Indrawati, L. R., & Jalunggono, G. (2020). 369470-Analisis-Pengaruh-Ekspor-Impor-Inflasi-K-05D2Ff8D. DINAMIC: Directory Journal of Economic, 2(3), 659–674. https://jom.untidar.ac.id/index.php/dinamic/article/view/1416
Pangesti, B. W., & Fahrurozi, A. (2023). Prediksi Nilai Tukar US Dollar dan Ringgit Malaysia Terhadap Rupiah Menggunakan Metode Long Short Term Memory. Jurnal Komputer Dan Teknologi, 2(1), 1–7. https://doi.org/10.58290/jukomtek.v2i1.82
Qureshi, M., Ahmad, N., Ullah, S., & Raza ul Mustafa, A. (2023). Forecasting real exchange rate (REER) using artificial intelligence and time series models. Heliyon, 9(5), e16335. https://doi.org/10.1016/j.heliyon.2023.e16335
Shakir Ali Ali, A., Ebrahimi, S., Masood Ashiq, M., Alasta, M. S., & Azari, B. (2022). CNN-Bi LSTM Neural Network for Simulating Groundwater Level. Computational Research Progress in Applied Science & Engineering, 8(1), 1–7. https://doi.org/10.52547/crpase.8.1.2748
Staffini, A. (2023). A CNN–BiLSTM Architecture for Macroeconomic Time Series Forecasting †. Engineering Proceedings, 39(1). https://doi.org/10.3390/engproc2023039033
Sumargo, R., & Wasito, I. (2024). Deep Learning for Exchange Rate Prediction Within Time Constrain. Sinkron, 8(3), 1259–1271. https://doi.org/10.33395/sinkron.v8i3.13633
Utari, D. T. (2018). Forecasting The Exchange Rate (IDR) of US Dollar (USD) Using Locally Stationary Wavelet. EKSAKTA: Journal of Sciences and Data Analysis, 145–154. https://doi.org/10.20885/eksakta.vol18.iss2.art6
Varadharajan, S. K., & Nallasamy, V. (2022). P-SCADA - A novel area and energy efficient FPGA architectures for LSTM prediction of heart arrthymias in biot applications. Expert Systems, 39(3), 1–16. https://doi.org/10.1111/exsy.12687
Yang, M., & Wang, J. (2021). Adaptability of Financial Time Series Prediction Based on BiLSTM. Procedia Computer Science, 199, 18–25. https://doi.org/10.1016/j.procs.2022.01.003
Zhang, J., Ye, L., & Lai, Y. (2023). Stock Price Prediction Using CNN-BiLSTM-Attention Model. 1–18.
Zhu, Q., Zeng, S., Chen, M., Wang, F., & Zhang, Z. (2024). Short-Term Load Forecasting Method Based on Bidirectional Long Short-Term Memory Model with Stochastic Weight Averaging Algorithm. Electronics (Switzerland), 13(15). https://doi.org/10.3390/electronics13153098

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.