Main Article Content

Erna Rosani Nubatonis

Abstract

This study aims to implement the GLCM (Gray Level Co-Occurrence Matrix) and KNN (K-Nearest Neighbor) methods in the classification of fiber root species based on leaf images. Fibrous roots are the most common root type in certain plants, and classifying plant species based on leaf image can provide useful information in contacting plants. The GLCM method is used to extract texture features from leaf images. The GLCM matrix describes the relative occurrence of pixel pairs with different gray intensities in the image. These features can provide information about leaf texture that can be used in classification. Furthermore, the KNN algorithm is used to classify plant types based on the extracted features. The dataset used in this study consists of a number of leaf images representing several different types of fiber root plants. Image processing includes pre-processing to obtain a clean image and ensure consistency of image size. After feature extraction using the GLCM method, these features are used as input for the KNN algorithm. KNN is used to classify unknown leaf images into one of the plant classes that have been previously trained. The experimental results show that the GLCM and KNN methods can provide good results in the classification of fiber root plant species based on leaf images. High classification accuracy indicates the effectiveness of this method in identifying plant species based on textural features of leaf images. Thus, this method can be a useful tool in the field of plant recognition and other applications that involve identifying plant species based on leaf images

Downloads

Download data is not yet available.

Article Details

How to Cite
Nubatonis, E. R. (2024) “Implementation Of GLCM (Gray Level Co-Occurrence Matrix) & KNN( K-Nearest Neighbor ) For Classification Of Fiber Root Plant Types Based On Leaf Image”, Jurnal Mantik, 8(2), pp. 1116-1122. doi: 10.35335/mantik.v8i2.5397.
References
Agus, P., Utami, Yu. R. W., & YS, W. L. (2017). Penerapan Algoritma K-Nearest Neighbors Untuk Prediksi Kelulusan Mahasiswa Pada STMIK Sinar Nusantara Surakarta. TIKomSiN, Vol 5,No 1, 27–31.
Agustina, F., & Ardiansyah, Z. A. (2020). Identifikasi Citra Daging Ayam Kampung dan Broiler Menggunakan Metode GLCM dan Klasifikasi-NN Image Identification of Local Chicken Meat and Broiler Chicken MeatUsing GLCM Method and K-NN Classification. 25 Jurnal Infokam, XVI(1).
Akbarollah, M. F., Wiyanto, W., Ardiatma, D., & Zy, A. T. (2023). Penerapan Algoritma K-Nearest Neighbor Dalam Klasifikasi Penyakit Jantung. Journal of Computer System and Informatics (JoSYC), 4(4), 850–860. https://doi.org/10.47065/josyc.v4i4.4071
Aprilita, W. Z., Akbar, R., Cahyadi Prayogi, R., Informatika, T., & Amik Riau, S. (2023). SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat Comparison of K-Nearest Neighbor (KNN) and Naive Bayes Algorithms in the Classification of Parkinson’s Disease Komparasi Algoritma K-Nearest Neighbor (KNN) dan Naive Bayes dalam Klasifikasi P. 188–193. https://journal.irpi.or.id/index.php/sentimas
Ardila, L., Rosanti, D., & Kartika, T. (2022). Karakteristik Morfologi Tanaman Buah di Desa Suka Damai Kecamatan Tungkal Jaya Kabupaten Musi Banyuasin. Indobiosains, 4(2), 36. https://doi.org/10.31851/indobiosains.v4i2.6163
Astuti, Y. P., Subhiyakto, E. R., Wardatunizza, I., & Kartikadarma, E. (2023). Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Jenis Tanah Berbasis Android. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 220–225. https://doi.org/10.30591/jpit.v8i3.5026
Budianita, E., Ulfadhyani, T., & Yanto, F. (2019). Implementasi Algoritma Canny Dan Backpropagation Untuk Mengklasifikasi Jenis Tanaman Mangga. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI), 11(November), 13–21.
Cholil, S. R., Handayani, T., Prathivi, R., & Ardianita, T. (2021). Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa. IJCIT (Indonesian Journal on Computer and Information Technology), 6(2), 118–127. https://doi.org/10.31294/ijcit.v6i2.10438
Daffa, G., Jayanta, & Zaidiah, A. (2022). Klasifikasi Tanaman Zaitun Menggunakan Algoritma K-Nearest Neighbor Dan Metode Gray Level Co-Occurence Matrix. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), 1(1), 327–334.
Dewi, N. P. D. A. S., Kesiman, M. W. A., Sunarya, I. M. G., Indradewi, I. G. A. A. D., & Andika, I. G. (2023). TPHerbleaf?: Dataset Untuk Klasifikasi Jenis Daun Tumbuhan Herbal Berdasarkan Lontar Usada Taru Pramana. Jurnal RESISTOR (Rekayasa Sistem Komputer), 6(2), 57–68. https://doi.org/10.31598/jurnalresistor.v6i2.1421
Dwi Fasnuari, H. A., Yuana, H., & Chulkamdi, M. T. (2022). Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Penyakit Diabetes Melitus. Antivirus?: Jurnal Ilmiah Teknik Informatika, 16(2), 133–142. https://doi.org/10.35457/antivirus.v16i2.2445
Eko Prasetyo. (2012). 2.\tPengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. 4(2).
Fikriah, F. K., Burhanis Sulthan, M., Mujahidah, N., & Khoirur Roziqin, M. (2022). Naïve Bayes untuk Klasifikasi Penyakit Daun Bawang Merah Berdasarkan Ekstraksi Fitur Gray Level Cooccurrence Matrix (GLCM). Jurnal Komtika (Komputasi Dan Informatika), 6(2), 133–141. https://doi.org/10.31603/komtika.v6i2.7925
Frencis Matheos Sarimole, & Ridad Diadi, R. (2022). Klasifikasi Jenis Jamur Menggunakan Ekstraksi Fitur Glcm Dan K-Nearest Neighbor ( Knn ). Jurnal Informatika Teknologi Dan Sains, 4(3), 286–290. https://doi.org/10.51401/jinteks.v4i3.1996
Kusanti, J., & Haris, N. A. (2018). Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut. Jurnal Informatika: Jurnal Pengembangan IT, 3(1), 1–6. https://doi.org/10.30591/jpit.v3i1.669
Lamasigi, Z. Y. (2021). DCT Untuk Ekstraksi Fitur Berbasis GLCM Pada Identifikasi Batik Menggunakan K-NN. 3, 1–6.
Legito, L., Riau, N. P., Putro, A. N. S., Mardiani, E., Arifin, N. Y., Sepriano, S., & Erkamim, M. (2023). Penerapan Algoritma K-Nearest Neighbor untuk Analisis Sentimen Terhadap Isu Khilafah dan Radikalisme di Indonesia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 324–330. https://doi.org/10.57152/malcom.v3i2.893
Leidiyana, H. (2013). Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor. Jurnal Penelitian Ilmu Komputer, System Embedded & Logic, 1(1), 65–76.
Napulun, K., Rahman, A. Y., Informatika, T., Malang, U. W., Malang, K., Adat, S., & Ape, I. (2024). Klasifikasi jenis sarung adat ile ape menggunakan glcm dan svm. 8(4), 7196–7203.
Nuraeni, S., Syam, S. P. A., Wajdi, M. F., Firmansyah, B., & Malkan, M. (2023). Implementasi Metode K-NN Untuk Menentukan Jurusan Siswa di SMAN 02 Manokwari. G-Tech: Jurnal Teknologi Terapan, 7(1), 89–95. https://doi.org/10.33379/gtech.v7i1.1905
Rohpandi, D., Sugiharto, A., & Jati, M. Y. S. (2018). Klasifikasi Citra Digital Berbasis Ekstraksi Ciri Berdasarkan Tekstur Menggunakan GLCM Dengan Algoritma K-Nearest Neighbor. Jurnal VOI (Voice Of Informatics), 7(2), 79–86.
Rosiva Srg, S. A., Zarlis, M., & Wanayumini, W. (2022). Identifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan K-NN (K-Nearest Neighbor). MATRIK?: Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(2), 477–488. https://doi.org/10.30812/matrik.v21i2.1572
Ryan, I., & Pigai, S. (2020). Morfologi tanaman pisang Jiikago berdasarkan kearifan lokal suku Mee di kampung Idaiyo distrik Obano kabupaten Paniai. Jurnal Pertanian Dan Peternakan, 5(2), 1–8.
Setiaji, B., & Huda, A. A. (2022). Implementasi Gray Level Co-Occurrence Matrix (GLCM) Untuk Klasifikasi Penyakit Daun Padi. Pseudocode, 9(1), 33–38. https://doi.org/10.33369/pseudocode.9.1.33-38
Shandy, Q., Panna, S. S., & Malago, Y. (2019). Penerapan Metode Grey Level Co-Occurrence Matriks (GLCM) dan K-Nearest Neighbor (K-NN) Untuk Mendeteksi Tingkat Kematangan Buah Belimbing Bintang. Jurnal Nasional CosPhi, 3(1), 2597–9329.
Widodo, R., Widodo, A. W., & Supriyanto, A. (2018). Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) Citra Buah Jeruk Keprok (Citrus reticulata Blanco) untuk Klasifikasi Mutu. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 5769–5776. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3420
Widyaningsih, M. (2017). Identifikasi Kematangan Buah Apel Dengan Gray Level Co-Occurrence Matrix (GLCM). Jurnal SAINTEKOM, 6(1), 71. https://doi.org/10.33020/saintekom.v6i1.7