ANALISIS GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) DALAM MENGENALI CITRA EKSPRESI WAJAH ANALISIS GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) DALAM MENGENALI CITRA EKSPRESI WAJAH
Main Article Content
Abstract
Ekspresi wajah merupakan cara pengungkapan atau proses menyatakan maksud tertentu seperti sedih, bahagia, terkejut, takut, marah dan bad mood. Perubahan fitur wajah pada bibir, mata, pipi, membesarkan alis dan mulut terbuka dapat dijadikan variabel dalam menentukan maksud dari ekpresi wajah. Dataset yang digunakan dalam penelitian ini yaitu citra wajah dengan ekspresi : sedih, bahagia, terkejut, takut, marah, netral dan bad mood dengan ukuran 256x256. File citra yang digunakan untuk pelatihan maupun pengujian diambil dari situs http://www.kasrl.org/jaffeimages.zip dengan total keseluruhan sampling 213 citra ekspresi wajah. Klasifikasi ekspresi wajah menggunakan metode gray level co-occurrence matrix (GLCM). Hasil Klasifikasi pada ekspresi wajah netral GLCM mampu mengklasifikasi dengan rata-rata tingkat akurasi 33%, ekspresi marah 48%, ekspresi bahagia 73%, ekspresi bad mood 44%, ekspresi takut 15%, ekspresi sedih 54%, dan ekspresi terkejut 68%.
Downloads
Article Details
[2] Ali, S.K. Sohaib, S. Rabia, A. dkk. 2017. Brief review of facial expression recognition techniques. International Journal of Advanced and Applied Sciences, 4(4)
[3] Minaee, S & Amirali, A. 2019. Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network.
[4] Anis, E.I.U. & M. AkheelaKhanum. 2018. A Comparative Study Of Facial Recognition Systems. International Journal of Advanced Research in Computer Science Volume 9, Special Issue No. 2
[5] Mercy,A.R & R. Durgadevi. 2017. Image Processing Techniques To Recognize Facial Emotions. International Journal of Engineering and Advanced Technology (IJEAT) Volume-6 Issue-6
[6] Wibowo, H. Mauridhi, M.P. & Eko, M.Y. 2016. Deteksi Gerak Otot Frontalis Berbasis Citra 3 Dimensi Menggunakan Gray Level Co-Occurrence Matrix. KINETIK Vol.1, No.2
[7] Muhathir.2018. Classification of face expression using visual word section. Journal of informatics and telecommunication engineering vol. 1 (2)
[8] Dwi F.A.Tito, W.P & Randy, E.S. 2018. Cotton Texture Segmentation Based On Image Texture Analysis Using Gray Level Co-occurrence Matrix (GLCM) And Euclidean Distance. International Journal of Applied Engineering Research Volume 13, Number 1
[9] Pathak, B. & Debajyoti, B. 2013. Texture analysis based on the gray-level co-occurrence matrix considering possible orientations. International journal of advanced research in electrical vol. 2, issue 9.
[10] Faleh H.M. & Wafaa A.A. 2016. Texture Features Analysis using Gray Level Co-occurrence Matrix for Abnormality Detection in Chest CT Images. Iraqi Journal of Science, Vol. 57, No.1A
[11] Adi, K. Catur E.W. Aris, P.W. dkk. 2018. Detection Lung Cancer Using Gray Level Co-Occurrence Matrix (GLCM) and Back Propagation Neural Network Classification. Journal of Engineering Science and Technology Review 11 (2)
[12] Yan, H.C.Lai, K.W. Tan, T.S. dkk.2011. Gray-Level Co-occurrence Matrix Bone Fracture Detection. American Journal of Applied Sciences 8 (1)
[13] Singh, S. Divya, S & Suneeta, A. 2017. GLCM and Its Application in Pattern Recognition. International Symposium on Computational and Business Intelligence
[14] Karthikeyan, S. & N, R. 2014. Performance analysis of gray level cooccurrence matrix texture features for glaucoma diagnosis. American journal of applied sciences 11 (2)
[15] Nidhi, M.G.G & Dr, S.A.L. 2015. Face detection and facial expression recognition system using 2dpca. International journal for technological research in engineering volume 2, issue 7
[16] Perveen, N. Nazir, A. M.A.Q.B.K. dkk. 2016. Facial expression recognition through machine learning. Internasional journal of scientific & technology research volume 5, issue 03
[17] Achmad, R.R. Imron, S.G & Sidik, A.P. 2019.Klasifikasi Wajah Menggunakan Support Vector Machine (SVM). Riset dan E-Jurnal Manajemen Informatika Komputer Volume 3, Number 2