Comparison Analysis of SVM Algorithm with Linear Regression in Predicting used Car Prices
Main Article Content
Abstract
During the high activity , car has become a basic need. On the other hand, the price of new car is getting higher. To meet these needs, people are looking for alternatives by buying used cars. One of the factors to consider when looking for a used car is price. In this study, two algorithms that are quite popular in terms of prediction will be tested, namely the Support Vector Machine algorithm and the Linear Regression algorithm in predicting used car prices. Support Vector Machine is a supervised learning method that analyzes data and recognizes patterns for regression. Support Vector Machine has the ability to solve linear and nonlinear problems. Linear Regression Algorithm is a modeling and analysis of numerical data consisting of one or more independent variables and the value of the dependent variable, with the aim of using regression analysis to estimate the value of the dependent variable based on the value of the independent variable. The result of this research is that the SVM method can perform better than linear regression. SVM can perform kernel-tricks that can handle non-linear data, thus making the non-linear data appear to be linear. but this cannot be done by Linear regression.
Downloads
Article Details
A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,” Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.
M. Electric, “Prediksi Harga Mobil Bekas Dengan Machine Learning,” vol. 6, no. 5, 2021, [Online]. Available: https://emea.mitsubishielectric.com/ar/products-solutions/factory-automation/index.html.
F. Destiawati, H. Dhika, N. Network, and I. Pendahuluan, “Model Penentuan Pembelian Kondisi Mobil Bekas,” 2017.
A. Supriyatna and W. P. Mustika, “Komparasi Algoritma Naive bayes dan SVM Untuk Memprediksi Keberhasilan Imunoterapi Pada Penyakit Kutil,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 2, no. 2, p. 152, 2018, doi: 10.30645/j-sakti.v2i2.78.
F. R. Lumbanraja, R. S. Sani, D. Kurniawan, and A. R. Irawati, “Implementasi Metode Support Vector Machine Dalam Prediksi Persebaran Demam Berdarah Di Kota Bandar Lampung,” J. Komputasi, vol. 7, no. 2, 2019, doi: 10.23960/komputasi.v7i2.2426.
A. Bode, “Perbandingan Metode Prediksi Support Vector Machine Dan Linear Regression Menggunakan Backward Elimination Pada Produksi Minyak Kelapa,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 4, no. 2, pp. 104–107, 2019, doi: 10.51876/simtek.v4i2.57. [8] F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 1, p. 23, 2021, doi: 10.23887/janapati.v10i1.31035.
R. Maulana and D. Kumalasari, “Analisis Dan Perbandingan Algoritma Data Mining Dalam Prediksi Harga Saham Ggrm,” J. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019, [Online]. Available: https://finance.yahoo.com/quote/GGRM.J.
M. F. Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. II, no. 9, pp. 3112–3123, 2018.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
M. R. Redo and A. Irianti, “Perbandingan performa Algoritma Neural Network, Regresi Linier, dan Random Forest dalam simulasi prediksi angka kematian pasien COVID-19 di Indonesia,” Semin. Nas. Has. Penelit. dan Pengabdi. Masy., pp. 54–62, 2021, [Online]. Available: https://jurnal.darmajaya.ac.id/index.php/PSND/article/view/2915.
A. Darmawan, N. Kustian, and W. Rahayu, “Implementasi Data Mining Menggunakan Model SVM untuk Prediksi Kepuasan Pengunjung Taman Tabebuya,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 2, no. 3, p. 299, 2018, doi: 10.30998/string.v2i3.2439.
Suhardjono, W. Ganda, and H. Abdul, “Prediksi Waktu Kelulusan Mahasiswa Menggunakan Svm Berbasis Pso,” Bianglala Inform., vol. 7, no. 2, pp. 97–101, 2019.
A. Handayanto, K. Latifa, N. D. Saputro, and R. R. Waliansyah, “Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi,” JUITA J. Inform., vol. 7, no. 2, p. 71, 2019, doi: 10.30595/juita.v7i2.4378.
P. D. Atika and Rasim, “Implementasi Jaringan Syaraf Tiruan Metode Backpropagation untuk Prediksi Penjualan Mobil Bekas,” Implementasi Jar. Syaraf Tiruan Metod. Backpropagation untuk Prediksi Penjualan Mob. Bek., vol. 18, no. 2, pp. 107–112, 2019, doi: 10.36054/jict-ikmi.v18i2.70.
H. P. Tambunan and S. Zetli, “Implementasi Metode K-Nearest NeigborDalam Peramalan Penjualan Mobil Bekas di Kota Batam,” Comasie, vol. 3, no. 3, pp. 21–30, 2020.
A. Dirgantara, S. Herdyansyah, and R. Rasenda, “Klasifikasi Penerimaan Mobil Bekas Berdasarkan Metode Neural Network,” J. Ris. Inform., vol. 2, no. 1, pp. 43–48, 2020, doi: 10.34288/jri.v2i1.119.
B. J. Putra, T. B. Kurniawan, D. Antoni, and A. H. Mirza, “Prediksi Kebutuhan Alat Kesehatan Rumah Sakit Menggunakan Metode Algoritma Regression Linier dan Naïve Bayes,” vol. 11, no. 2, 2020.
A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 41–50, 2021, doi: 10.35957/jatisi.v8i1.701.
N. Fitri, M. Mawardi, and R. A. Kurniawan, “Korelasi Antara Keterampilan Metakognisi Dengan Aktivitas Dan Hasil Belajar Siswa Pada Mata Pelajaran Kimia Kelas X Mia Sma Negeri 7 Pontianak,” AR-RAZI J. Ilm., vol. 5, no. 1, 2017, doi: 10.29406/arz.v5i1.655.
Siregar, S. D., Panjaitan, B., Girsang, E., & Dabukke, H. (2019). Learning Media Using Discovery Learning Approach to Improve Student Learning Outcomes. Jurnal Pendidikan Fisika, 8(2), 120-125.
Dharshinni, N. P., Azmi, F., Fawwaz, I., Husein, A. M., & Siregar, S. D. (2019, July). Analysis of accuracy K-means and apriori algorithms for patient data clusters. In Journal of Physics: Conference Series (Vol. 1230, No. 1, p. 012020). IOP Publishing.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.